next | previous | forward | backward | up | top | index | toc | packages | Macaulay2 website
SubalgebraBases :: subringIntersection

subringIntersection -- Intersection of subrings

Synopsis

Description

Computes the intersection of subrings "S_1" and "S_2". These subrings must be subrings of the same ambient ring. The ambient ring is allowed to be a polynomial ring or the quotient of a polynomial ring.

i1 : R = QQ[x,y];
i2 : I = ideal(x^3 + x*y^2 + y^3);

o2 : Ideal of R
i3 : Q = R/I;
i4 : S1 = subring {x^2, x*y};
i5 : S2 = subring {x, y^2};
i6 : S = subringIntersection(S1, S2);
 -- 0.000089473 seconds elapsed
 -- 0.000886226 seconds elapsed
 -- 0.000228623 seconds elapsed
 -- 0.000086222 seconds elapsed
 -- 0.000779387 seconds elapsed
 -- 0.000211058 seconds elapsed
 -- 0.000071853 seconds elapsed
 -- 0.000070062 seconds elapsed
 -- 0.000175183 seconds elapsed
 -- 0.000092304 seconds elapsed
 -- 0.000761702 seconds elapsed
 -- 0.000207092 seconds elapsed
 -- 0.000081636 seconds elapsed
 -- 0.000713012 seconds elapsed
 -- 0.000200149 seconds elapsed
 -- 0.000083882 seconds elapsed
 -- 0.000688629 seconds elapsed
 -- 0.000203245 seconds elapsed
 -- 0.000095437 seconds elapsed
 -- 0.000816295 seconds elapsed
 -- 0.000230325 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
i7 : gens S

o7 = | x2 x2y2+xy3 y4 xy3 y6 xy5 |

             1       6
o7 : Matrix Q  <--- Q
i8 : isSAGBI S
 -- 0.000080527 seconds elapsed
 -- 0.00083376 seconds elapsed
 -- 0.000219507 seconds elapsed
 -- 0.000086769 seconds elapsed
 -- 0.000801216 seconds elapsed
 -- 0.00021503 seconds elapsed
 -- 0.000091445 seconds elapsed
 -- 0.000717253 seconds elapsed
 -- 0.000226321 seconds elapsed
 -- 0.000082009 seconds elapsed
 -- 0.000709492 seconds elapsed
 -- 0.000210072 seconds elapsed
 -- 0.000082731 seconds elapsed
 -- 0.000664296 seconds elapsed
 -- 0.000202519 seconds elapsed
 -- 0.000091157 seconds elapsed
 -- 0.000747534 seconds elapsed
 -- 0.000212345 seconds elapsed
 -- 0.000087758 seconds elapsed
 -- 0.00086375 seconds elapsed
 -- 0.000213959 seconds elapsed
 -- 0.000085219 seconds elapsed
 -- 0.000783136 seconds elapsed
 -- 0.000205325 seconds elapsed
 -- 0.00008912 seconds elapsed
 -- 0.000729518 seconds elapsed
 -- 0.000209582 seconds elapsed
 -- 0.000097968 seconds elapsed
 -- 0.000754156 seconds elapsed
 -- 0.000214819 seconds elapsed
 -- 0.000085269 seconds elapsed
 -- 0.000744598 seconds elapsed
 -- 0.000222782 seconds elapsed
 -- 0.000093723 seconds elapsed
 -- 0.000809846 seconds elapsed
 -- 0.000233479 seconds elapsed
 -- 0.000090415 seconds elapsed
 -- 0.00108979 seconds elapsed
 -- 0.000314639 seconds elapsed
 -- 0.000096859 seconds elapsed
 -- 0.00110622 seconds elapsed
 -- 0.000312602 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction

o8 = true

If the generators of $S$ form a sagbi basis and the degree limit is high enough, then they are a generating set for the intersection.

See also

Ways to use subringIntersection :

For the programmer

The object subringIntersection is a method function with options.